Prospects for little Higgs models at the LHC

Eduardo Ros

IFIC-Valencia

Received: 01 August 2003 / Accepted: 26 August 2003 / Published Online: 19 September 2003 – © Springer-Verlag / Società Italiana di Fisica 2003

Abstract. The ATLAS Collaboration at the LHC is presently investigating the possibility to detect particles predicted by Little Higgs models. In this talk, the possibility to detect the heavy gauge boson Z_H and its subsequent decay into Zh is reviewed.

1 Introduction

Little Higgs models have been recently proposed as a possible solution to the hierarchy problem. They try to explain the smallness of the Higgs boson mass by introducing new particles at the 1 TeV scale. In the so-called 'littlest Higgs model' [1], these new particles are scalars ($\Phi^0, \Phi^+, \Phi^{++}$), gauge bosons (W_H, Z_H, A_H) and a heavy top quark (T). The masses and couplings of all these new particles are completely fixed (except for A_H) once the scale f and a set of couplings called v', θ, θ' and λ_1 are specified.

2 Phenomenology at the LHC

Branching ratios and cross-sections at the LHC have been computed in [2]. From these calculations it is possible to extract some conclusions concerning experimental strategies in order to test Little Higgs models with LHC experiments:

- The scalar Φ^{++} is produced in W^+W^+ fusion (VBF mechanism). The cross-section is proportional to $(v'/v)^2$, where v = 244 GeV is the Fermi scale, but v'/v is expected to be small. The dominant decay mode would be $\Phi^{++} \rightarrow W^+W^+$, and the Standard Model background for this mode is rather large, so this particle is difficult to observe.
- The heavy top quark T is produced according to $bq \rightarrow Tq'$ via W exchange in the t-channel (Wb fusion mechanism). The cross-section is proportional to λ_1^2 and λ_1 is expected to be of order 1, but the *b*-quark content of the proton is small so the cross-section is also small. Therefore this particle is also difficult to observe.
- The gauge boson Z_H is produced in $q\bar{q}$ annihilation, in the same way as a normal Z boson. The cross-section is proportional to $(cot\theta)^2$, the mixing angle θ being the only free parameter of the theory once the mass of Z_H is fixed. For a mass of 2 TeV and $cot\theta = 1$, the crosssection is 1 pb, so Z_H is copiously produced at the LHC. The charged gauge boson W_H is also produced

in $q\bar{q}'$ collisions, the same as the W, and the production cross-section is also large. The production cross-section for the gauge boson A_H is more difficult to calculate since the couplings are not entirely fixed by the model.

In the following we concentrate in the experimental search for Z_H using the ATLAS experiment at the LHC.

3 Experimental search for Z_H

Once the heavy gauge boson Z_H is produced, it decays into quark or lepton pairs. Taking into account the universality of the coupling and neglecting fermion masses, BR($Z_H \rightarrow l^+l^-=1/24=4.2\%$, where l is any charged lepton. At small values of $\cot\theta$, however, the decay $Z_H \rightarrow Zh$, where h is the Higgs boson, is dominant.

The decay $Z_H \to e^+e^-$ provides the best signature to detect Z_H at the LHC, since the relative invariant mass resolution, $\sigma(M)/M$, does not degrade for electrons with increasing mass (contrary to the muon case). The background, mainly Drell-Yan pairs, is much smaller than the signal over a wide range of $\cot\theta$ values. Fig.1 shows the region in the $M - \cot\theta$ plane where a discovery of Z_H is possible at the LHC, using the ATLAS detector. A luminosity of $3 \cdot 10^5$ pb⁻¹ corresponding to 3 years of running at high luminosity has been assumed. If a signal is detected, it would also be possible to measure $\cot\theta$ via the cross-section and the width of Z_H . Indeed, as mentioned before, the cross-section is proportional to $(\cot\theta)^2$, and the total width of Z_H is:

$$\Gamma/M = [3.4(\cot\theta)^2 + 0.071(\cot 2\theta)^2]\%$$

In this expression the first term accounts for the decay of Z_H into fermions and the second term for the decay $Z_H \to Zh$.

4 Search for the decay $Z_H \rightarrow Zh$

The observation of the decay $Z_H \rightarrow Zh$ is essential to test Little Higgs models. The amplitude of the decay is not

Fig. 1. Region where a discovery of the decay $Z_H \rightarrow e^+e^-$ is possible using the ATLAS detector at the LHC. An integrated luminosity of $3 \cdot 10^5$ pb⁻¹ has been assumed. The discovery region corresponds to a significance of the signal larger than 5.

proportional to $(cot\theta)^2$ as for fermions, but to $(cot2\theta)^2$. Unfortunately, this $(cot2\theta)^2$ factor in the branching ratio has a tendency to cancel the $(cot\theta)^2$ factor in the Z_H production cross-section. As a result, the Zh event yield is rather small, except for $cot\theta$ values around 0.3. In particular, the event yield completely vanishes for both $cot\theta = 0$ and $cot\theta = 1$.

The experimental signature of Zh events depends on the mass of the Higgs boson. In the following M(h)=120GeV is assumed, so the dominant decay of the Higgs boson is $h \to b\bar{b}$. In this case the final state consists of a pair of *b*-jets and a pair of leptons from the Z decay. The main background is Z production in association with jets. As the mass of Z_H increases, the two *b*-jets from the *h* decay have a tendency to merge into a double *b*-quark jet with very high p_T . In order to identify these events, b-tagging at high p_T is therefore extremely important. The result of full-detector simulation studies show that it would be possible to tag these double *b*-quark jets with very high p_T , by simply requiring a reduced tagging efficiency (40%) instead of the usual 50%). Fig.2 shows the region in the $M - \cot\theta$ plane where the decay $Z_H \to Zh$ can be detected at the LHC, using the ATLAS detector and a luminosity of $3 \cdot 10^5 \text{ pb}^{-1}$. The figure includes also the decay $b \to \gamma \gamma$ and the result obtained using the decay $W_H \to Wh$, assuming that W_H and Z_H have exactly the same mass. If the mass of the Higgs boson is larger than 120 GeV, the decays into W^+W^- and ZZ have to be considered as well.

Fig. 2. Region where a discovery of the decay $Z_H \to Zh$ is possible using the ATLAS detector at the LHC. The Higgs boson h is assumed to decay into either $b\bar{b}$ or $\gamma\gamma$. An integrated luminosity of $3 \cdot 10^5 \text{ pb}^{-1}$ has been assumed. The discovery region corresponds to a significance of the signal larger than 5. The decay $W_H \to Wh$ is considered as well. V_H is either Z_H or W_H .

5 Summary and outlook

A short summary of the prospects for detecting at the LHC the heavy gauge boson Z_H , predicted by the Little Higgs model, has been presented. The possibility to detect the decay $Z_H \rightarrow Zh$ is discussed as well, assuming that the mass of the Higgs boson is 120 GeV. Work concerning the production and decay of other particles predicted by the model, namely A_H , W_H , T and Φ^{++} , is in progress. Other Little Higgs models including two Higgs doublets, rather than just one, will be considered as well.

Acknowledgements

I would like to thank I. Hinchliffe, F. Gianotti and J.E. Garcia for discussions and help in the preparation of this talk. I also want to thank my other ATLAS colleagues participating in Little Higgs searches: S. Asai, G. Azuelos, K. Benslama, D. Constanzo, G. Couture, N. Kanaya, M. Lechowski, R. Mehdiyev, G. Polesello and D. Rousseau.

References

- 1. Arkani-Hamed et al., JHEP 207, (2002) 34
- Han et al., Phys.Rev. D67, (2003) 95004
 G. Burdman, M. Perelstein, A. Pierce, hep-ph/0212228